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32 [8].- THE INSTITUTE OF MATHEMATICAL STATISTICS, Editors, and H. L HARTER 

& D. B. OWEN, Coeditors, Selected Tables in Mathematical Statistics, Volume I, 
American Mathematical Society, Providence, R. I., second printing with revisions, 
1973, 403 pp., 26 cm. Price $8.60. 

This is the first of a series of specialized tables prepared and edited by the Com- 
mittee on Mathematical Tables of the Institute of Mathematical Statistics and published 
by the American Mathematical Society under a joint agreement. 

The present volume contains five sets of tables; namely, "Tables of the Cumula- 
tive Noncentral Chi-Square Distribution", by G. E. Haynam, Z. Govindarajula and F. C. 
Leone, "Tables of the Exact Sampling Distribution of the Two-Sample Kolmogorov- 
Smirnov Criterion Dmn, (m < n)", by P. J. Kim and R. I. Jennrich, "Critical Values 
and Probability Levels for the Wilcoxon Rank Sum Test and the Wilcoxon Signed Rank 
Test," by Frank Wilcoxon, S. K. Katti and Roberta A. Wilcox, "The Null Distribution 
of the First Three Product-Moment Statistics for Exponential, Half-Gamma, and Normal 
Scores," by P. A. W. Lewis and A. S. Goodman, and "Tables to Facilitate the Use of 
Orthogonal Polynomials for Two Types of Error Structures," by Kirkland B. Stewart. 

Each set of tables is prefaced by an introduction, a description of the mathemati- 
cal algorithms used in their preparation, a discussion of tabular accuracy and interpola- 
tion, examples of their application, and references to the relevant literature. 

A possible criticism of this collection of tables is that it is too specific and selec- 
tive; however, this reviewer believes that this selection reflects the fact that most statis- 
tical texts do not adequately address the problems to which these tables apply. For ex- 
ample, this reviewer has many times been confronted with problems in chemical and 
mechanical engineering where a cumulative-error model beyond that of the first degree 
would have been appropriate, but necessary guidance was not to be found in the avail- 
able literature. The tables of Stewart would have been extremely useful in that connec- 
tion, and it is to be hoped that these tables will inspire similar research with other types 
of error structures. 

Similarly, the tables of Lewis and Goodman address certain reliability problems 
involving failure clustering patterns that do not conform to typical textbook problems. 

Especially useful is the presentation by Haynam, Govindarajula and Leone of two 
types of tables displaying different aspects of the power of the chi-square distribution 
as illustrated by well chosen examples. 

The importance of the tables of Kim and Jennrich and also of those of Wilcoxon, 
Katti and Wilcox cannot be overemphasized for those researchers who depend upon 
distribution-free statistics for the solution of many of their problems. 

In conclusion, this reviewer endorses this approach adopted by the Institute of 
Mathematical Statistics of soliciting meritorious material for mathematical statistical 
tables. This procedure should lead to a broad representation of those difficult statis- 
tical problems that continue to challenge researchers, and it should provide relevant 
tables not hitherto accessible in the literature. 

HARRY FEINGOLD 

33 [9].-I. 0. ANGELL, Table of Complex Cubic Fields, Royal Holloway College, Uni- 
versity of London, Surrey, England, 1972, 53 computer output sheets deposited in 
the UMT file. 

There are listed here the 3169 nonconjugate cubic fields Q(x) having discriminants 
- D between 0 and - 200000. For each Q(x) there is given: D; a generating equation 
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x3-Ax2 +Bx-C=O 

of discriminant - N2D and index N; the fundamental unit co = (1x2 + Jx + K)/L 
where 0 < co < 1 and L is a divisor of N; the class number H and an ideal norm bound 
P used in its calculation. The H and co are computed by Voronoi's method. This table 
should be useful and informative for all students of algebraic number theory. 

There were two discrepancies between Angell's very brief paper [1] and the orig- 
inal table deposited in the Royal Society UMT. The paper states that C(2) x C(4) is 
the class group for D = 16871 while the table correctly had H = 4 since the group is 
really C(2) x C(2). The original table listed 3168 fields since one. line was inadvertently 
omitted. It is included in the present version and is 

D N A B C I J K L P H 

5359 3 14 61 39 - 17 236 - 171 3 1 1 

There follows a detailed critique of the conventions adopted in this table and 
then some further commentary and additions going beyond the table. In the equation 
selected for generating x, the coefficients A, B, C are all positive and such that the sin- 
gle real root satisfies 0 < x < 1. That can always be accomplished simply by a transla- 
tion x = y + a or a reflection x = a - y. While this standardization certainly has merit 
it also has various minor faults: the coefficients are sometimes unduly large, and in 
further calculations it is frequently preferable to have the inflection point or any mini- 
mum of the cubic polynomial closer to x = 0. To illustrate, one of the 13 fields for 
D = 63199139, (far beyond this table), is generated by y3 - 183y2 + 119y - 22 = 0. 
By y = 183 - x, this becomes f(x) = x3 - 366X2 + 33608x - 21755 = 0 in Angell's 
convention. It has a minimum with f(x) = . . . 508, 85, 22, 325, 1000,... far out at 
x = 183 while f(x) has five or six decimals near x = 0. A more serious objection con- 
cerns the index N. It never exceeds 5 here but is not always minimized, not even when 
this can easily be done. For example, for the D = 5359 above, the N = L = 3 there 
can be eliminated since x = (y + 1)/(y + 4) gives y3 - 59y - 175 = 0 with N = L = 1. 
A minimal N is certainly preferable, both for practical computation and for theoretical 
studies concerning monogenic rings of integers, and, if and when N can be easily re- 
duced, it seems desirable to do so. 

The first five N > 1 here are for D = 356, 424, 431, 440, and 503, all being listed 
as N = 2. But, while 431 and 503 cannot be reduced to N = 1 since the prime 2 
splits in these fields, the other three D can easily be reduced to N = 1. The next N = 

2 is D = 516, but here I am uncertain whether it can be reduced or not. The first 
N = 3 here is for D = 972 (for Q(v/12)) and this can be easily made N = 1. While 
D = 2028, for Q(,/26), can be easily reduced from N = 3 to N = 2, I am uncertain 
if it can be further reduced to N = 1. The first N = 4 and 5 here can be reduced to 
N = 2, and so forth. 

The convention 0 < c < 1 also has a mixed assessment. Its reciprocal c = c- 
> 1 generally has much larger coefficients but c can be used to easily compute the regu- 
lator R = llog co l. In contrast, co may be exceedingly small and one has catastrophic 
loss of significance due to cancellation in its numerical evaluation unless one first in- 
verts it algebraically. The programmer could circumvent this difficulty by printing co 
and evaluating and printing R ini addition. (And why not? R is just as significant as H is.) 

Davenport and Heilbronn have proven [2] that the asymptotic density of noncon- 
jugate complex cubic fields is 
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[4?(3)] - = 0.20798. 

In this table one has an average density of only 3169/20000 = 0.15845. The ratio of 
the number of fields up to D = lOOOn divided by lOOOn for n = 1(1)20 is shown in 
Table 1. 

TABLE 1 

n ratio n ratio n ratio n ratio n ratio 

1 0.1270 5 0.1458 9 0.1513 13 0.1544 17 0.1569 
2 0.1350 6 0.1480 10 0.1520 14 0.1557 18 0.1572 
3 0.1397 7 0.1514 11 0.1539 15 0.1561 19 0.1577 
4 0.1435 8 0.1501 12 0.1540 16 0.1562 20 0.1584 

The observed convergence is slowly from below and surprisingly smooth-except for a 
fluctuation at D z 7000-8000. 

The growth here is associated mostly with those D for which m (> 1) noncon- 
jugate fields exist. There are 58 D here with m = 3 and 22 with m = 4. m > 4 does 
not occur here. However, for larger D, there will be cases of D = 27S2 where S is a 
square-free product of many primes. The multiplicity m increases exponentially with 
the number of prime factors of S. For fundamental discriminants - D, m = (3r - 1)/2 
where r is the 3-rank of Q(V - D). The 22 cases of m = 4 here are all of this type 
with r = 2. The maximum r known at present [3] is r = 4 and so its D = 87386945207 
will have m = 40. 

Most of the m = 4 discriminants here were already well-known, such as D = 3299, 
4027, etc. Here are three known algebraic series [4], [5] that have r > 2 and there- 
fore m > 4. These are the fundamental discriminants - D where D equals 

3A(a, b) = 3(a6 + 4b) b-0 (mod 3), 

D6(z) = 108z4 - 148z3 + 84z2 - 24z + 3, z(:k 1) 1 (mod 3), 

4D3(y) = 108y4 - 296y3 + 336y2 - 192y + 48, y-- 1 (mod 6). 

For these D, N, A, B, C can be given a priori. Since I have not published this else- 
where, I include these formulas in Table 2. Note that the C in the first fields for D6(z) 
and 4D3(y) are integral even when z-- 1 (mod 3) and y _ + 1 (mod 6). In these cases 

TABLE 2 
D N A B C 

3A(a, b) 3 0 3ab 2b3 -a3 
3A(a, b) 3 0 - 3ab 2b3+ a3 
3A(a, b) 3 0 3b2 a3 
3A(a, b) 6 0 3a2 4b3 

D6(z) 1 1 1 -z z(1 - 2z) 
D6(Z) 1 0 -z (6z2 - 4z + 1)/3 
D6(Z) 1 0 z(2 - 3z) (6z3 - 6z2 + 4z - 1)/3 
D6(z) 8 0 8z - 3 (48Z2 - 40z + 10)/3 

4D3(y) 2 1 3 - 2y 4y2 - 6y + 3 
4D3(y) 2 0 - 2y 4y2 - 8(2y - 1)/3 
4D3(y) 2 0 y(4 - 3y) 2y3 - 4y2 + 8(2y - 1)/3 
4D3(y) 2 0 4y - 3 4y 2 - 10(2y - 1)/3 
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one only knows that r > 1 and m > 1, and these are valid cubic fields. Note also that 
the A, B, C in Table 2 do not follow Angell's convention. 

There are known cases of r = 3, 4 in these series, such as the D6(28) = 63199139 
above, but they are far beyond Angell's table. Recently, F. Diaz y Diaz [6] sent me 
smaller D with r = 3. Two of these are 

Q(+l- 3321607) with C(3) x C(3) x C(63), 

Q(v'- 3640387) with C(3) x C(3) x C(18). 

For these D an algebraic evaluation of the A, B, C for the 13 cubic fields is not possible 
and one must use numerical methods. By a delightfully sophisticated combination of 
the infrastructure [7] of the real fields Q(V 3D) and unimodular and Tschirnhausen 
transformations, I computed the 13 cubic equations for these two D. 

Table 3 shows the 13 fields for D = 3321607 with the A, B, C following Angell's 
convention. The splitting primes 2, 13, 19, 29, 41 and 43 split only in those four of 
the 13 fields marked S. This shows that the 13 fields are distinct and that I managed 
to make N = 1 except where 2 splits. In evaluating these cubic polynomials for x = + 1, 
? 2, etc., one is struck with the large number of functional values equal to perfect cubes. 
These occur because these cubic fields have a 3-rank = 2 according to the Gras-Callahan 
theorem, cf. [8, p. 185]. 

TABLE 3, D = 3321607 

N A B C 2 13 19 29 41 43 
8 45 664 404 S S 
8 41 616 512 S S 
8 59 960 656 S S S 
6 37 498 288 S S 
1 68 1179 755 S S S 
1 80 1601 27 S 
1 129 4174 883 S S S 
1 2 95 27 S 
1 17 144 125 S 
1 45 526 357 S S 
1 9 112 103 
1 78 1555 1303 S S 
1 126 4027 3637 S S 

For D = 3640387, no prime < 13 splits and Q(V/- D) has L(1, X) = 0.26674. 
This is sufficiently close to the lower bound allowed by the Riemann Hypothesis [9] 
that it is unlikely that a much smaller quadratic class number than its h = 27 * 6 can oc- 
cur with r > 3. For this D, I found ten fields with N = 1, two with N = 8 and one 
with N = 7. I leave it as an exercise for the reader to reproduce these equations and to 
verify that 13 of the splitting primes and the 13 fields form the incomplete balanced 
block design [10] in Table 4. Any two fields intersect in only one of these splitting 
primes and any two primes both split in only one of these fields. Also, show that 149 
splits in all 13 fields and 421 ramifies. 
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TABLE 4, D = 3640387 

13 31 43 53 73 109 173 193 227 239 281 337 617 

I S S S S 
II S S S S 

III S S S S 
IV S S S S 
V s S S S 

VI S S S S 

VII S S S S 
VIII S S S S 

Ix S S S S 
x S S S S 

XI S S S S 
XII S S S S 

xiii s S S S 

Since the infrastructure-Tschirnhausen method is quite efficient, and does not re- 
quire much trial-and-error, one does not need a high-speed computer for D of this size, 
and I worked out these equations on a nonprogrammable HP-45 hand computer. One 
principal feature of the method is that as each cubic equation comes forth there is no 
need to show that it gives a field different than the others. That is automatic. I may 
publish this method elsewhere. 
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